2025 Entrance Examination for Doctoral Program, Dept. of Precision Eng., The University of Tokyo

東京大学大学院工学系研究科精密工学専攻 2025 年度博士後期課程選考 専門学術 (小論文)

2024年8月27日(火)10:00~12:00 (2時間)

2024 Entrance Examination for Doctoral Program,
Dept. of Precision Engineering, The University of Tokyo
Specialty (Essay)
Auguest 27, Tuesday, 2024, 10:00-12:00 Two hours

試験開始まで開けないこと

Do not open this booklet before the start of the examination

- 7設問中、2問を選択して解答せよ。
- ・ 各用語につき 1 枚の解答用紙を用いること。
- ・各解答用紙の「設問番号」欄には設問番号を、「受験番号」 欄には受験番号を明記すること。

Answer two out of seven questions.

- · Use an answer sheet for each term.
- Put the question number and your applicant's number in the blank spaces on the top of each answer sheet.

(白紙)

(Blank page)

(白紙)

(Blank page)

設問1 計測工学

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容 について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工 学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- 恒温室
- 計測標準
- X 線回折
- 白色雑音

Question 1 Instrumentation Technology

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- Constant temperature room
- Standard of measurement
- X-ray diffraction
- White noise

設問2 精密加工学

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- 非球面加工
- 射出成形
- 工作機械
- 鏡面仕上げ

Question 2 Precision Machining

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- Aspheric machining
- Injection molding
- Machine tool
- Mirror finish

設問3 マイクロシステム材料学

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- リフローはんだつけ
- ・レジスト
- ショットキーバリア
- 単結晶

Question 3 Material Science for Microsystems

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- Reflow soldering
- Resist
- Schottky barrier
- Single crystal

設問4 メカトロニクス・ロボティクス

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- 誘導モータ
- 磁気回路
- ティーチングプレイバック
- ZMP (zero moment point)

Question 4 Mechatronics · Robotics

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- Induction motor
- Magnetic circuit
- Teaching playback
- ZMP (zero moment point)

設問5 生産システム工学

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容 について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工 学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- MTBF (mean time between failures)
- プルシステムとプッシュシステム
- 巡回セールスマン問題
- バリューチェーン

Question 5 Manufacturing System Engineering

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- MTBF (mean time between failures)
- Pull system and push system
- Travelling salesman problem
- Value chain

設問6 設計システム工学

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- 設計最適化
- オントロジ
- リバースエンジニアリング
- 安全率

Question 6 Design System Engineering

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- Design optimization
- Ontology
- Reverse engineering
- Safety factor

設問7 バイオ・メディカル

以下の用語から2つを選択し、それぞれの用語の意味を説明し、その技術的・工学的内容 について詳しく論述せよ。論述には、例えば、背景、原理、応用、有用性、発展性、精密工 学における意義などに関しても加えること。また、図表や数式などを用いてもよい。

用語:

- ATP (アデノシン三リン酸)
- 心電図
- ネルンスト電位
- 神経インタフェース

Question 7 Bio-medical

Choose two terms among the following. Explain the meaning of each term and discuss what you know about each of them separately. Note: Refer to such aspects as the background, principle of operation, field of application, usefulness, expected future development, and technical and/or scientific significance in Precision Engineering. Figures, tables, and equations may be used to clarify your explanation.

- ATP (adenosine triphosphate)
- Electrocardiogram
- Nernst potential
- Neural interface